

3

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition

Authors: Guangke Chen¹, Yedi Zhang², Fu Song^{3,4} Presenter: Qifan Zhang⁵

[Li Hu et al. Defenses to Membership Inference Attacks: A Survey]

Identify a person by his/her speeches

■ Identify a person by his/her speeches

Application:

voice assistant wake up

personalized service on smart home

Workflow:

Workflow:

Supervised training: shadow SRS

SLMIA-SR: Feature Engineering

Feature engineering for binary classifier

hypothesis: training speakers
non-training speakers

Fig. 2: The comparison of intra-compactness and inter-farness between training and non-training speakers.

Inter-dissimilarity: 82 features

SLMIA-SR: Enhancement

• Mixing ratio r training (of attack model)

Fig. 4: Comparison of features with different r.

SLMIA-SR: Enhancement

■ *N*-dependent attack model

Fig. 5: Comparison of features with different N.

SLMIA-SR: Enhancement

Voice Chunk Splitting

SLMIA-SR: Evaluation

Model

Name	Architecture
LSTM-GE2E	LSTM [29], [53]
TDNN-CE	TDNN [54], [55]
Raw-AAM	RawNet3 [56], [57]
Res-AP	ResNetSE34V2 [58], [57]
VGG-GE2E	VGGVox40 [59], [57]

- Dataset: VoxCeleb-2 (en), LibriSpeech (en), KeSpeech (zh)
- Metric: Accuracy, AUROC, True Positive Rate (TPR) at x% False Positive Rate (FPR)
- Baseline: LRL-MIA [1], EncoderMI [2], TLK-MIA [3], FaceAuditor [4]

[1] User-level membership inference attack against metric embedding learning
[2] Membership inference attacks against self-supervised speech models
[3] EncoderMI: Membership inference against pre-trained encoders in contrastive learning
[4] FACEAUDITOR: data auditing in facial recognition systems

SLMIA-SR: Overall Performance

			Accuracy			AUROC		TI	PR @ x% F	PR	TPR @ 1% FPR			
		VC-2	LS	KS	VC-2	LS	KS	VC-2 (x=0.1)	LS (x=0.2)	KS (x=0.1)	VC-2	LS	KS	
LSTM-GE2E	LRL-MIA	0.698	0.895	0.669	0.789	0.952	0.767	1.5%	31.7%	1.7%	8.1%	41.7%	8.4%	
	EncoderMI-T	0.7	0.877	0.592	0.792	0.952	0.768	1.6%	31.7%	1.8%	7.8%	41.7%	8.5%	
	TLK-MIA	0.7	0.877	0.592	0.792	0.952	0.768	1.6%	31.7%	1.8%	7.8%	41.7%	8.5%	
	SLMIA-SR	0.894	0.974	0.785	0.958	0.994	0.880	33.5%	66.5%	10.5%	58.7%	83.5%	28.1%	
TDNN-CE	LRL-MIA	0.82	0.723	0.595	0.906	0.791	0.676	20.1%	0.6%	1.8%	46.6%	6.7%	4.6%	
	EncoderMI-T	0.779	0.713	0.583	0.904	0.791	0.668	20.8%	0.6%	0.8%	45.9%	6.7%	4.0%	
	TLK-MIA	0.779	0.713	0.583	0.904	0.791	0.668	20.8%	0.6%	0.8%	45.9%	6.7%	4.0%	
	SLMIA-SR	0.891	0.83	0.679	0.965	0.897	0.761	33.8%	11.1%	5.2%	64.4%	21.9%	11.1%	
Raw-AAM	LRL-MIA	0.705	0.679	0.622	0.786	0.732	0.676	1.6%	0.8%	0.4%	9.6%	2.7%	6.1%	
	EncoderMI-T	0.703	0.661	0.601	0.785	0.732	0.656	1.9%	0.8%	0.2%	9.8%	2.7%	1.9%	
	TLK-MIA	0.703	0.661	0.601	0.785	0.732	0.656	1.9%	0.8%	0.2%	9.8%	2.7%	1.9%	
	SLMIA-SR	0.749	0.783	0.689	0.856	0.856	0.754	5.6%	6.8%	3.0%	18.3%	12.7%	9.0%	
Res-AP	LRL-MIA	0.756	0.924	0.627	0.842	0.974	0.740	8.8%	6.6%	1.0%	24.4%	64.5%	7.4%	
	EncoderMI-T	0.747	0.887	0.606	0.841	0.974	0.740	8.8%	6.6%	1.0%	24.3%	64.7%	7.4%	
	TLK-MIA	0.747	0.887	0.606	0.841	0.974	0.740	8.8%	6.6%	1.0%	24.3%	64.7%	7.4%	
	SLMIA-SR	0.799	0.956	0.699	0.892	0.986	0.796	12.5%	14.4%	5.1%	40.2%	72.3%	11.0%	
VCC CE2E	LRL-MIA	0.714	0.847	0.592	0.783	0.916	0.634	5.6%	9.8%	0.2%	17.2%	15.4%	2.8%	
	EncoderMI-T	0.711	0.827	0.574	0.785	0.916	0.624	5.5%	9.8%	0.1%	17.4%	15.4%	2.2%	
VGG-GE2E	TLK-MIA	0.711	0.827	0.574	0.785	0.916	0.624	5.5%	9.8%	0.1%	17.4%	15.4%	2.2%	
	SLMIA-SR	0.743	0.914	0.648	0.835	0.968	0.700	16.6%	22.1%	1.6%	26.4%	45.9%	5.0%	

		Accuracy			AUROC			TPR @ x% FPR						
								x=0.1	x=0.2	x=0.1	x=1	x=1	x=1	
		VC-2	LS	KS	VC-2	LS	KS	VC-2	LS	KS	VC-2	LS	KS	
LSTM-GE2E	EncoderMI-V	0.649	0.866	0.632	0.72	0.932	0.770	2.0%	19.2%	4.4%	6.6%	35.2%	10.5%	
	FaceAuditor-S	0.655	0.842	0.698	0.714	0.932	0.768	1.2%	16.8%	1.6%	5.3%	33.0%	7.3%	
	FaceAuditor-P/R	0.614	0.768	0.615	0.691	0.863	0.773	1.6%	3.8%	2.8%	6.2%	14.5%	9.9%	
	SLMIA-SR	0.785	0.976	0.794	0.861	0.994	0.885	7.2%	62.1%	13.6%	24.4%	82.7%	24.4%	
TDNN CE	EncoderMI-V	0.724	0.703	0.603	0.81	0.772	0.681	19.6%	1.1%	1.0%	28.2%	5.6%	4.8%	
	FaceAuditor-S	0.784	0.666	0.604	0.866	0.742	0.639	20.1%	2.1%	0.1%	34.2%	4.9%	1.6%	
IDMN-CE	FaceAuditor-P/R	0.772	0.578	0.512	0.866	0.628	0.562	11.9%	0.3%	0.2%	30.9%	1.4%	1.9%	
	SLMIA-SR	0.839	0.773	0.661	0.92	0.856	0.733	23.6%	2.8%	1.7%	42.9%	8.1%	6.6%	
	EncoderMI-V	0.657	0.657	0.606	0.709	0.708	0.658	2.7%	0.9%	0.2%	8.7%	2.0%	2.3%	
Dow AAM	FaceAuditor-S	0.636	0.64	0.598	0.686	0.702	0.640	0.2%	0.2%	0.3%	2.3%	2.0%	1.8%	
Kaw-AAM	FaceAuditor-P/R	0.663	0.592	0.514	0.732	0.659	0.584	3.5%	0.4%	0.2%	6.7%	2.8%	1.3%	
	SLMIA-SR	0.697	0.764	0.650	0.774	0.827	0.701	3.8%	3.1%	1.0%	8.8%	5.1%	2.8%	
Res-AP	EncoderMI-V	0.712	0.87	0.599	0.789	0.948	0.730	4.9%	33.1%	3.0%	13.7%	41.3%	6.4%	
	FaceAuditor-S	0.722	0.885	0.678	0.794	0.961	0.750	4.9%	28.3%	3.1%	14.9%	52.5%	8.8%	
	FaceAuditor-P/R	0.672	0.697	0.549	0.744	0.771	0.630	4.2%	4.2%	0.6%	11.6%	8.7%	3.1%	
	SLMIA-SR	0.763	0.932	0.692	0.841	0.982	0.782	13.6%	43.0%	4.6%	29.0%	60.7%	10.9%	
VGG-GE2E	EncoderMI-V	0.692	0.797	0.584	0.756	0.878	0.634	1.0%	4.7%	0.5%	11.8%	9.9%	2.0%	
	FaceAuditor-S	0.671	0.797	0.560	0.728	0.89	0.579	0.4%	4.8%	0.1%	5.9%	14.4%	0.6%	
	FaceAuditor-P/R	0.605	0.648	0.527	0.685	0.71	0.566	2.1%	1.1%	0.5%	7.3%	2.8%	1.9%	
	SLMIA-SR	0.708	0.934	0.637	0.776	0.98	0.686	6.3%	46.7%	0.8%	15.5%	65.8%	3.5%	

Disjoint Architectures

Fig. 15: Effect of the dataset distribution.

Ordinary users: Voice data auditing

Amazon sued over Alexa child recordings in US

(§ 13 June 2019

System maintainers: Accessing privacy level of speaker recognition services before publishing

Take away

- Speaker-level membership inference attack against speaker recognition systems
- Distinguish training and non-training speakers by intra-similarity & inter-dissimilarity
- 103 features to launch attacks
- Three strategies to enhance attacks
- Strategy to reduce #queries
- Effective even for disjoint dataset distributions and architectures

Code: <u>https://github.com/S3L-official/SLMIA-SR</u>

Paper: <u>https://www.ndss-symposium.org/ndss-paper/slmia-sr-speaker-level-membership-inference-attacks-against-speaker-recognition-systems</u>

Any Question? Thanks!

Guangke Chen

chengk@shanghaitech.edu.cn

https://guangkechen.site

Trustworthy Artificial Intelligence

expected to graduate (Ph.D.) in June 2024

on the job market

Consider dropping emails for opportunities

Publications:

[1] Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems

Guangke Chen, Sen Chen, Lingling Fan, Xiaoning Du, Fu Song, Yang Liu

S&P (Oakland) 2021. Citation>185

[2] QFA2SR: Query-Free Adversarial Transfer Attacks to Speaker Recognition Systems

Guangke Chen, Yedi Zhang, Zhe Zhao, Fu Song

USENIX Security 2023

[3] SLMIA-SR: Speaker-Level Membership Inference Attacks on Speaker Recognition <u>Guangke Chen</u>, Yedi Zhang, Fu Song NDSS 2024

[4] Towards Understanding and Mitigating Audio Adversarial Examples for Speaker Recognition

Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, Feng Wang, Jiashui Wang

IEEE TDSC

[5] AS2T: Arbitrary source-to-target adversarial attack on speaker recognition systems

Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, Yang Liu

IEEE TDSC